Algebraic equation to represent a triangle.
The lengths of the sides of a triangle are $p, q, r$ respectively. If $p^2 + q^2 + r^2= pq + qr + pr$, then this triangle is
(A) equilateral triangle
(B) isosceles triangle
(C) right angled triangle
(D) obtuse triangle
My Attempt:
\begin{align}
&p^2 + q^2 + r^2= pq + qr + pr \\
&\implies (p^2-pq) + (q^2-qr) +( r^2-pr)=0 \\
&\implies p(p-q)+q(q-r)+r(r-p)=0,
\end{align}
but I'm unable to connect this information to the given options. Please help me.
Since $p^2+q^2+r^2 \geq pq+qr+rp$ for $p,q,r \in R^{+}$
But given that $p^2+q^2+r^2 = pq+qr+rp$.
Equality holds when $p=q=r$.
Hence equilateral triangle.
NOTE:
$(p-q)^2\geq 0$ , $p^2+q^2\geq 2pq$
$(q-r)^2\geq 0$ , $q^2+r^2\geq 2qr$
$(r-p)^2\geq 0$ , $r^2+p^2\geq 2rp$
then
$p^2+q^2+r^2 \geq pq+qr+rp$ for $p,q,r \in R^{+}$
Let me clarify Person Average's suggestion:
\begin{align}
&2(p^2+q^2+r^2)=2(pq+qr+rp) \\
&\implies (p^2-2pq+q^2)+(q^2-2qr+r^2)+(r^2-2rp+p^2)=0 \\
&\implies (p-q)^2+(q-r)^2+(r-p)^2=0 \\
&\implies p=q=r.
\end{align}
What you need is just multiply $2$ for left hand and right hand , then you can find that it is $(3\times \text{square}) = 0$ and they must be all zero . so it is a equilateral triangle .